3D Diffusion Equation with Convection

Diffusion equation with convection term is written as follows: \begin{equation} \frac{\partial}{\partial t}c=D\vec{\nabla}^2c-\vec{v}\cdot\vec{\nabla}c \end{equation} Multiply both sides by a factor of $e^{\vec{a}\cdot\vec{r}}$, on the right hand side, we thus have: \begin{align} &De^{\vec{a}\cdot\vec{r}}\vec{\nabla}^2c-e^{\vec{a}\cdot\vec{r}}\vec{v}\cdot\vec{\nabla}c\\ &=D\vec{\nabla}^2e^{\vec{a}\cdot\vec{r}}c-2D\vec{a}e^{\vec{a}\cdot\vec{r}}\cdot \vec{\nabla}c-Da^2e^{\vec{a}\cdot\vec{r}}c-e^{\vec{a}\cdot\vec{r}}\vec{v}\cdot\vec{\nabla}c \end{align} It can be deduced that: \begin{align} \boxed{\vec{a}=-\frac{\vec{v}}{2D}} \end{align} As $C=e^{-\frac{\vec{v}}{2D}\cdot\vec{r}}c$, the equation then becomes: \begin{equation} \boxed{\frac{\partial C}{\partial t}=D\vec{\nabla}^2C-\frac{v^2}{4D}C} \end{equation} \begin{align*} \hat{C}(k,t)=\hat{C}(k,0)\exp\Big(-k^2Dt-\frac{v^2}{4D}t\Big) \end{align*} This means that: \begin{equation} C(r,t)=\frac{1}{8\pi^{1.5}(Dt)^{1.5}}\exp\Big(-\frac{v^2}{4D}t\Big)\exp\Big(-\frac{r^2}{4Dt}\Big) \end{equation} \begin{equation} \boxed{c(r,t)=\frac{1}{8\pi^{1.5}(Dt)^{1.5}}\exp\Big(-\frac{v^2}{4D}t\Big)\exp\Big(-\frac{r^2}{4Dt}+\frac{\vec{v}\cdot\vec{r}}{2D}\Big)} \end{equation}

Figure 1: Solution to the Diffusion Equation with $D=1$, $v=1$, and $\vec{v}\cdot\vec{r}=r$.

Previous: 3D Diffusion Equation; Next: Diffusion Equation and Green Function; Go back; Go back to Main Page