A Tilted Oscillator with Damping

The friction can also be considered in the case of a tilted oscillator. We can incorporate such effect through the damping term in the equation of motion: \begin{align} \frac{d^2r}{dt^2}+\underline{\frac{\zeta}{m}\frac{dr}{dt}}=-\frac{k}{m}r+\frac{k}{m}L+g\sin\alpha \end{align} Laplace transformation allows us to write the following: \begin{align} (s^2+\frac{\zeta}{m}s+\frac{k}{m})R(s)-(s+\frac{\zeta}{m})r(0)=\frac{1}{s}(\frac{k}{m}L+g\sin\alpha) \end{align} We then need to apply inverse laplace transformation in the following: \begin{align} R(s)=\frac{s+\frac{\zeta}{m}}{s^2+\frac{\zeta}{m}s+\frac{k}{m}}\Big(r(0)-L-\frac{mg\sin\alpha}{k}\Big)+\frac{1}{s}\Big(L+\frac{mg\sin\alpha}{k}\Big) \end{align} This leads to the following: \begin{align} r(t)=\Big(r(0)-L-\frac{mg\sin\alpha}{k}\Big)e^{-\frac{\zeta}{2m}t}\Big[\cos(\sqrt{\frac{k}{m}-\frac{\zeta^2}{4m^2}}t)+\frac{\zeta}{2m}\sin(\sqrt{\frac{k}{m}-\frac{\zeta^2}{4m^2}}t)\Big]+L+\frac{mg\sin\alpha}{k} \end{align}

Figure 1: Animation of a tilted oscillator with $\alpha=26.6^{\circ}$, $\frac{k}{m}=4$, $\frac{\zeta}{2m}=0.01$ and $g=10$.

Go back; Go back to Main Page