A Tilted Simple Harmonic Motion
Figure 1: A tilted oscillator.

A tilted oscillator is a 2D problem as depicted in Figure 1. As shown in Figure 1, the spring with spring constant $k$ is in an equilibrium position when $(x,y)=(L_x,L_y)$. The equilibrium length of the spring is $L$. Then, we can write the equations of motion as: \begin{align} m\frac{d^2x}{dt^2}&=-k(x-L_x)\\ m\frac{d^2y}{dt^2}&=-k(y-L_y)+mg \end{align} where $m$ is the mass and $g$ is the gravitational acceleration. Transformation from Cartesian into polar coordinates that $x=r\cos\alpha$ and $y=r\sin\alpha$ results in the following second time derivatives: \begin{align} \frac{d^2x}{dt^2}&=-r\sin\alpha\frac{d^2\alpha}{dt^2}-r\cos\alpha\Big(\frac{d\alpha}{dt}\Big)^2-2\sin\alpha\frac{d\alpha}{dt}\frac{dr}{dt}+\cos\alpha\frac{d^2r}{dt^2}\\ \frac{d^2y}{dt^2}&=r\cos\alpha\frac{d^2\alpha}{dt^2}-r\sin\alpha\Big(\frac{d\alpha}{dt}\Big)^2+2\cos\alpha\frac{d\alpha}{dt}\frac{dr}{dt}+\sin\alpha\frac{d^2r}{dt^2}\\ \end{align} In this example of a tilted oscillator, $\alpha$ is a constant that never changes with time. Hence the equation of motion in polar coordinate: \begin{align} \cos\alpha\frac{d^2r}{dt^2}&=-\frac{k}{m}(r\cos\alpha-L_x)\\ \sin\alpha\frac{d^2r}{dt^2}&=-\frac{k}{m}(r\sin\alpha-L_y)+mg \end{align} This can be combined into one single equation: \begin{align} \frac{d^2r}{dt^2}&=-\frac{k}{m}[r-(L_x\cos\alpha+L_y\sin\alpha)]+g\sin\alpha \end{align} The term $(L_x\cos\alpha+L_y\sin\alpha)=L$, so that: \begin{align} \frac{d^2r}{dt^2}&=-\frac{k}{m}r+\frac{k}{m}L+g\sin\alpha \end{align} Finally, we arrive at the solution: \begin{align} r(t)&=r(0)\cos\Big(\sqrt{\frac{k}{m}}t\Big)+\Big(L+\frac{mg\sin\alpha}{k}\Big)\Big[1-\cos(\sqrt{\frac{k}{m}}t)\Big] \end{align} This can be converted back to $x(t)$ and $y(t)$ easily: \begin{align} x(t)&=r(0)\cos\alpha\cos\Big(\sqrt{\frac{k}{m}}t\Big)+\Big(L_x+\frac{mg\sin\alpha\cos\alpha}{k}\Big)\Big[1-\cos(\sqrt{\frac{k}{m}}t)\Big]\\ y(t)&=r(0)\sin\alpha\cos\Big(\sqrt{\frac{k}{m}}t\Big)+\Big(L_y+\frac{mg\sin^2\alpha}{k}\Big)\Big[1-\cos(\sqrt{\frac{k}{m}}t)\Big] \end{align} The fun part is to visualize the trajectory as an animation.

Figure 2: Animation of a tilted oscillator with $\alpha=26.6^{\circ}$, $k/m=4$ and $g=10$.

Go back; Go back to Main Page