Fourier Transformation
Fourier transformation is a transformation in space. If we have a one dimensional function $c(x)$, which is a function of $x$. It can be transformed to the Fourier space, $\hat{c}(k_x)$:
\begin{equation}
\hat{c}(k_x)=\int_{-\infty}^{\infty}\exp(-ik_xx)c(x)dx
\end{equation}
With the knowledge of $\hat{c}(k_x)$, it can also be transformed back to the real space:
\begin{equation}
c(x)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\exp(ik_xx)\hat{c}(k_x)dk_x
\end{equation}
For example, if $c(x)=\exp(-x^2)$:
\begin{align}
\hat{c}(k_x)&=\int_{-\infty}^{\infty}\exp(-ik_xx)\exp(-x^2)dx\\
&=e^{-\frac{k_x^2}{4}}\int_{-\infty}^{\infty}\exp[-(x+\frac{ik_x}{2})^2]dx\\
&=\sqrt{\pi}\exp(-\frac{k_x^2}{4})
\end{align}
With $\hat{c}(k_x)=\exp(-k_x^2/4)$, we can transform that back to the real space:
\begin{align}
c(x)&=\frac{\sqrt{\pi}}{2\pi}\int_{-\infty}^{\infty}\exp(ik_xx)\exp(-k_x^2/4)dk_x\\
&=\frac{\exp(-x^2)}{2\sqrt{\pi}}\int_{-\infty}^{\infty}\exp[-\frac{1}{4}(k_x-2ix)^2]dk_x\\
&=\exp(-x^2)
\end{align}
3D Fourier Transformation
In 3D space, the Fourier transformation of function $c(x,y,z)$ can be written as follows:
\begin{align}
\hat{c}(k_x,k_y,k_z)&=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} \exp(-ik_xx-ik_yy-ik_zz)c(x,y,z)dxdydz\\
&=\int_{-\infty}^{\infty}\exp(-i\vec{k}\cdot\vec{r})c(\vec{r})d\vec{r}\\
\end{align}
If the function $c(\vec{r})$ is uniform regardless of the orientation of the vector $\vec{r}$:
\begin{align}
&=\int_0^{2\pi}d\psi\int_0^{\infty}\int_{-1}^{1}\exp(-ikr\cos\theta)c(r) r^2d\cos\theta dr\\
&=4\pi\int_0^{\infty}\frac{\sin(kr)}{kr}c(r)r^2dr
\end{align}
For which, the integral has been rewritten in terms of spherical coordinate. And with the knowledge of $\hat{c}(k)$, we can transform the function back to real space:
\begin{align}
c(r)=\frac{1}{2\pi^2}\int_0^{\infty}\frac{\sin(kr)}{kr}\hat{c}(k)k^2dk
\end{align}
With these, we can solve the diffusion equation with ease!
Next: 3D Diffusion Equation; Go back; Go back to Main Page