

Objectives

1. Boltzmann H-theorem.
2. Normal solution $f^{(0)}$.
3. Calculation of mass flux, pressure tensor as well as heat flux using $f^{(0)}$.

Rewriting again for the Boltzmann Equation, we get:

$$\frac{\partial f_j}{\partial t} + \mathbf{v}_j \cdot \nabla_{\mathbf{r}} f_j + \frac{\mathbf{F}_j}{m_j} \cdot \nabla_{\mathbf{v}} f_j = 2\pi \sum_i \int_{-\infty}^{\infty} \int_0^{\infty} (f'_i f'_j - f_i f_j) v_r b d b d \mathbf{v}_i \quad (1)$$

Now consider the phase space distribution of all particles, which are identical to one another such that we have a one-component system. In this case, we can drop the summation operator \sum_i and all the subscripts j and change the subscript i to 1, such that we have:

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{r}} f + \frac{\mathbf{F}}{m} \cdot \nabla_{\mathbf{v}} f = 2\pi \int_{-\infty}^{\infty} \int_0^{\infty} (f'_1 f' - f_1 f) v_r b d b d \mathbf{v}_1 \quad (2)$$

We then write the following H function:

$$H(t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f \ln f d\mathbf{r} d\mathbf{v} \quad (3)$$

Taking time derivative of both sides:

$$\frac{dH(t)}{dt} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\ln f \frac{\partial f}{\partial t} + \frac{\partial f}{\partial t} \right) d\mathbf{r} d\mathbf{v} \quad (4)$$

As total number of points in phase space does not change with time, we can write:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial f}{\partial t} d\mathbf{r} d\mathbf{v} = \frac{\partial}{\partial t} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f d\mathbf{r} d\mathbf{v} = 0 \quad (5)$$

We know that:

$$\begin{aligned} & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (\ln f) \mathbf{v} \cdot \nabla_{\mathbf{r}} f d\mathbf{r} d\mathbf{v} \\ &= \sum_{k=x,y,z} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} v_k (\ln f) \frac{\partial}{\partial k} f dk dv_k \\ &= \sum_{k=x,y,z} \int_{-\infty}^{\infty} v_k \left[f \ln f \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} df \right] dv_k = 0 \end{aligned}$$

Similarly, we also know that:

$$\begin{aligned}
 & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (\ln f) \frac{\mathbf{F}}{m} \cdot \nabla_{\mathbf{v}} f d\mathbf{r} d\mathbf{v} \\
 &= \sum_{k=x,y,z} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{F_k}{m} (\ln f) \frac{\partial}{\partial v_k} f dk dv_k \\
 &= \sum_{k=x,y,z} \int_{-\infty}^{\infty} \frac{F_k}{m} \left[f \ln f \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} df \right] dk = 0
 \end{aligned}$$

With these, we can write:

$$\frac{dH(t)}{dt} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[2\pi (\ln f) \int_{-\infty}^{\infty} \int_0^{\infty} (f'_1 f' - f_1 f) v_r b d\mathbf{b} d\mathbf{v}_1 \right] d\mathbf{r} d\mathbf{v} \quad (6)$$

Looking at the collision integral more carefully, we find that:

$$\begin{aligned} & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_0^{\infty} (\ln f)(f'_1 f' - f_1 f) v_r b d b d \mathbf{v}_1 d \mathbf{r} d \mathbf{v} \\ &= - \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_0^{\infty} (\ln f')(f'_1 f' - f_1 f) v_r b d b d \mathbf{v}_1 d \mathbf{r} d \mathbf{v} \end{aligned}$$

Then we have:

$$\begin{aligned} & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_0^{\infty} (\ln f)(f'_1 f' - f_1 f) v_r b d b d \mathbf{v}_1 d \mathbf{r} d \mathbf{v} \\ &= \frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_0^{\infty} (\ln \frac{f}{f'})(f'_1 f' - f_1 f) v_r b d b d \mathbf{v}_1 d \mathbf{r} d \mathbf{v} \end{aligned}$$

Similarly for f_1 :

$$\begin{aligned} & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_0^{\infty} (\ln f_1)(f'_1 f' - f_1 f) v_r b d b d \mathbf{v}_1 d \mathbf{r} d \mathbf{v} \\ &= \frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_0^{\infty} (\ln \frac{f_1}{f'_1})(f'_1 f' - f_1 f) v_r b d b d \mathbf{v}_1 d \mathbf{r} d \mathbf{v} \end{aligned}$$

As we only have one component and the collision is elastic, an interchange of the f and f_1 is not going to affect the value of the integral, we then have:

$$\begin{aligned} & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_0^{\infty} (\ln f)(f'_1 f' - f_1 f) v_r b d b d \mathbf{v}_1 d \mathbf{r} d \mathbf{v} \\ &= \frac{1}{4} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_0^{\infty} \ln \left(\frac{f_1 f}{f'_1 f'} \right) (f'_1 f' - f_1 f) v_r b d b d \mathbf{v}_1 d \mathbf{r} d \mathbf{v} \end{aligned}$$

At equilibrium, $dH(t)/dt = 0$. This suggests that:

$$\frac{f' f'_1 - f f_1}{4} \ln \left(\frac{f f_1}{f' f'_1} \right) = 0 \quad (7)$$

$$\ln f + \ln f_1 = \ln f' + \ln f'_1 \quad (8)$$

This bears a close resemblance with conservation law, which leads to the result that $\ln f$ should be a linear combination of m , $m\mathbf{v}$ and $\frac{1}{2}mv^2$ as these quantities are conserved.

$$\ln f = c_1 m + m\mathbf{c}_2 \cdot \mathbf{v} - \frac{c_3}{2} mv^2 \quad (9)$$

c_1 , \mathbf{c}_2 and c_3 are constants. f should have the following form:

$$f = c \exp \left[-\frac{c_3}{2} m \left(\mathbf{v} - \frac{\mathbf{c}_2}{c_3} \right)^2 \right] \quad (10)$$

where $c = \exp[c_1 m + mc_2^2/(2c_3)]$. These constants can be found as follows:

$$\rho = \int_{-\infty}^{\infty} f d\mathbf{v} \quad (11)$$

$$c = \left(\frac{c_3 m}{2\pi} \right)^{1.5} \rho(\mathbf{r}, t) \quad (12)$$

$$\begin{aligned}
\mathbf{v}_0 &= \frac{1}{\rho} \int_{-\infty}^{\infty} \mathbf{v} f d\mathbf{v} \\
&= \int_{-\infty}^{\infty} \mathbf{v} \left(\frac{c_3 m}{2\pi} \right)^{1.5} \exp \left[-\frac{c_3}{2} m \left(\mathbf{v} - \frac{\mathbf{c}_2}{c_3} \right)^2 \right] d\mathbf{v} \\
&= \frac{\mathbf{c}_2}{c_3}
\end{aligned}$$

$$\begin{aligned}
(\mathbf{v} - \mathbf{v}_0)^2 &= \int_{-\infty}^{\infty} (\mathbf{v} - \mathbf{v}_0)^2 \left(\frac{c_3 m}{2\pi} \right)^{1.5} \exp \left[-\frac{c_3}{2} m (\mathbf{v} - \mathbf{v}_0)^2 \right] d\mathbf{v} \\
&= \int_0^{\infty} 4\pi \left(\frac{c_3 m}{2\pi} \right)^{1.5} (v - v_0)^4 \exp \left[-\frac{c_3 m}{2} (\mathbf{v} - \mathbf{v}_0)^2 \right] d(v - v_0) \\
&= \frac{3}{c_3 m}
\end{aligned}$$

As we know that $\frac{m(\mathbf{v} - \mathbf{v}_0)^2}{2} = \frac{3k_b T}{2}$, $c_3 = \frac{1}{k_b T}$.

This implies:

$$f = \rho(\mathbf{r}, t) \left(\frac{m}{2\pi k_b T(\mathbf{r}, t)} \right)^{1.5} \exp \left[-\frac{m(\mathbf{v} - \mathbf{v}_0(\mathbf{r}, t))^2}{2k_b T(\mathbf{r}, t)} \right] \quad (13)$$

Note that we have dropped the subscript j for convenience. For mass flux, we have:

$$\mathbf{J} = \rho m \langle (\mathbf{v} - \mathbf{v}_0) \rangle = m \int_{-\infty}^{\infty} (\mathbf{v} - \mathbf{v}_0) f d\mathbf{v} = \mathbf{0}$$

$$\mathsf{P} = \rho m \langle (\mathbf{v} - \mathbf{v}_0)(\mathbf{v} - \mathbf{v}_0) \rangle$$

$$p_{xy} = m \int_{-\infty}^{\infty} (v_x - v_{0,x})(v_y - v_{0,y}) f d(\mathbf{v} - \mathbf{v}_0) = \rho m \langle c_x c_y \rangle = 0$$

$$p_{xx} = \rho m \langle c_x^2 \rangle = \frac{\rho}{2b} = \rho k_b T$$

For which we have let $\mathbf{c} = (\mathbf{v} - \mathbf{v}_0)$.

$$\mathbf{q} = \frac{m}{2} \int_{-\infty}^{\infty} c^2 \mathbf{c} f d\mathbf{c}$$

$$q_x = \frac{\rho m}{2} \int_0^{2\pi} \cos^3 \psi d\psi \int_0^{\pi} \sin^4 \theta d\theta \int_0^{\infty} c^5 \left(\frac{b}{\pi}\right)^{1.5} e^{-bc^2} dc$$

This is because $c_x = c \sin \theta \cos \psi$. Easiest integral to evaluate is:

$$\begin{aligned} \int_0^{2\pi} \cos^3 \psi d\psi &= \int_0^{2\pi} (1 - \sin^2 \psi) \cos \psi d\psi \\ &= \int_0^0 (1 - \sin^2 \psi) d\sin \psi = 0 \end{aligned}$$

Similarly, $q_y = 0$ as $c_y = c \cos \theta \sin \psi$. $q_z = 0$, as the integral for ψ is:

$$\int_0^{2\pi} \sin^3 \psi d\psi = \int_0^{2\pi} (1 - \cos^2 \psi) \sin \psi d\psi = \int_1^1 (\cos^2 \psi - 1) d\cos \psi = 0$$