Objectives

1. Derivation of Boltzmann’s Equation.

2. Collision Terms.
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Conside a phase space function f;(vj,r;,t) of a particle j.
Infinitesimal change in v; and r;j can be expressed in terms of dt
that dvj = F—j_dt and drj = v;dt. By Taylor expansion,

df; = [( 8{3) v Vel + ijf]}dt (1)
Then, we have:
() v B ovan=(%) o

f i can be known by understanding the collision between gas
partlcles because the gain and the loss of f; with time is
dependent on the scattering due to collisions. With the
normalization to the number density of particle j:

/ fidvy = p; (3)
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{vi) = / fividvy
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With vg as the flow velocity:
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The peculiar velocity is defined as (vj — vo).
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One interesting observation is that:

m] f vo) fjdv; .
Zj Pjm;

With the proof that:

>y [ovididvi  vo o my 7 fidvy
Zj pPjm; Zj Pjmy

22 pimy(vy) 0

e L lie A\ U
Zj P

Now, for a particle j, we can write for f;:
0 F;
8{;] +v-Vefi + - Vy,; fj = collision contribution
m;

The task becomes figuring out this collision cotribution.
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Understanding a binary collision

my + mg = m) +mj (4)

Without any reaction, then m; = m/ and mg = m,. Then, the
momentum balance gives us:

miviy + mave = m1V/1 + m2V/2 (5)
0-577?11)% + 0.5m211§ = 0-5m,1U/12 + O.5m'2v§2 (6)

To make our lives easier, the velocities can be rewritten in
terms of relative velocity (vy) and center-of-mass velocity (ve).

Vy = V1 — V2
_ Mm1VvVi+mava

. =
m1 + mo
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Consider the momentum balance:

/ /
mi1Vvi + MaVe = M1Vy + MaVy

ma miy
=mi|Vet+ ———V¢ | +mg| Ve — ——— V¢
mi + mso mi + mso

= (m1 + ma)ve = (M1 + ma) vy
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This proves that ve = v.,. Consider the following definition of
vi and va:

m2
Vi = V¢ r
m1 +ma
mq
Vo = V¢ —
m1 +ma
2
V] = Vg “Vy + 5 Ur
mq + mo (m1 + mg)
2
mq m
Vy = U? — Ve Ve + L ) f
my + ma (m1 +ma)
The energy balance equation then becomes:
1 1 1 1
2 2 2 2
—myvi + —mavy = —(m1 + ma)v; + = ps:
2 2 2 2
where p = ;%2 This means that v, = v;. In conclusion,

during an elastic collision, the magnitude of v, and v, remain

unchanged. Only the direction of v, have changed, such that

Ve - vy = v2cos .
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We know that dvidve = |det(J)|dvedve, with J:

ovi Ovi 1 mo
J= |9 Ovr| — |: mi1+ma :|

Ova  Ova 1 ——™u

Ove ovy mi+mao

|det(J)| = 1. Therefore, dvydve. Similarly, for the
post-collisional velocities, dvi’dve’ = dv,'dv.. In spherical

coordinate, we get:
dv,' = v/ sin dv..dfdyp = dv, = v? sin Odv,dOdrp

We come to the conclusion that dvidvs = dvi'dva’.
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Collision Terms

We have to figure out the number of collisions with another
particle ¢ experienced by particle j per unit time. In one unit
time, if we assume that all particles j are stationary, then
particle ¢ has traveled a distance of |vj — vj|. For one particle j,

2b Number of collisions per unit time
= Z 277/ / fivrbdbdv;
i —o0 J0

Since p; = [*°_ fidvi, and the

Vi =
7 X volume is 27 [% [ v bdbdv;.

The probable number of particle j in an element of dr within
the range of vj to vj + dvj is f;jdrdv;
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Therefore, the probable number of collision for particle j per
unit time in an element of dr within the range of vj to vj + dv;j.

fidrdv; Y 27 / / f;v,bdbdv;
i —o00 J0

Similarly, consider the post-collisional velocity.

fidrdvy’ Y 2r / / fiolbdbdv;’
i —o0 J0

= fjdrdv; Y 27 / / flo,bdbdv;
i —o0 J0

The term associated with the post-collisional velocity is
responsible for the gain, whereas that of the pre-collisional
velocity is responsible for the loss. Therefore, we have:

Collision contribution = Z 27 / / (fifi = fifi)vrbdbdvy
i —o0 J0
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