Electron tunneling model

Theory

To simplify this problem to a large extent, we constructed a wave function using the following equation. \begin{equation} \psi = A\exp(\frac{-(x-x_o)^2}{\sigma^2})\exp(ikx) \end{equation} $A$ is a constant such that $\int \psi^*\psi dx = 1$. \begin{equation} i\hbar\frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2 \psi}{\partial x^2}+V\psi \end{equation} In reduced form, \begin{equation} \frac{\partial \psi}{\partial t} = \frac{i}{2}\frac{\partial^2 \psi}{\partial x^2}-iV\psi \end{equation} By Taylor's expansion, we can approximate $\frac{\partial \psi}{\partial t}$ and $\frac{\partial^2 \psi}{\partial x^2}$. \begin{equation}\label{eq:1a} \frac{\partial \psi}{\partial t} = \frac{\psi(x,t+\Delta t)-\psi(x,t)}{\Delta t} \end{equation} \begin{equation}\label{eq:1} \psi(x+\Delta x,t) \approx \psi(x,t)+\frac{\partial \psi}{\partial x}\Delta x + \frac{1}{2!}\frac{\partial^2 \psi}{\partial x^2}\Delta^2 x \end{equation} \begin{equation}\label{eq:2} \psi(x-\Delta x,t) \approx \psi(x,t)-\frac{\partial \psi}{\partial x}\Delta x + \frac{1}{2!}\frac{\partial^2 \psi}{\partial x^2}\Delta^2 x \end{equation} Therefore, we will obtain, \begin{equation}\label{eq:2a} \frac{\partial^2 \psi}{\partial x^2} = \frac{\psi(x+\Delta x,t)-2\psi(x,t)+\psi(x-\Delta x,t)}{\Delta^2 x} \end{equation} A wave function consists of real and imaginary parts. \begin{equation} \frac{\partial (\psi_r+i\psi_i)}{\partial t} = \frac{i}{2}\frac{\partial^2 (\psi_r+i\psi_i)}{\partial x^2}-iV(\psi_r+i\psi_i) \end{equation} So, we have obtained, \begin{equation}\label{eq:3} \frac{\partial \psi_r}{\partial t} = \frac{-1}{2}\frac{\partial^2 \psi_i}{\partial x^2}+V\psi_i \end{equation} \begin{equation}\label{eq:4} \frac{\partial \psi_i}{\partial t} = \frac{1}{2}\frac{\partial^2 \psi_r}{\partial x^2}-V\psi_r \end{equation} With Equations \ref{eq:1a} and \ref{eq:2a}, we can rewrite Equations \ref{eq:3} and \ref{eq:4}, \begin{equation}\label{eq:5} \psi_r(x,t+\Delta t) = \psi_r(x,t)-\frac{\Delta t}{2\Delta^2 x}(\psi_i(x+\Delta x,t)-2\psi_i(x,t)+\psi_i(x-\Delta x,t))+V\psi_i(x,t)\Delta t \end{equation} \begin{equation}\label{eq:6} \psi_i(x,t+\Delta t) = \psi_i(x,t)+\frac{\Delta t}{2\Delta^2 x}(\psi_r(x+\Delta x,t)-2\psi_r(x,t)+\psi_r(x-\Delta x,t))-V\psi_r(x,t)\Delta t \end{equation} Also it is important to normalize $\psi_r$ and $\psi_i$ such that $\int \psi^*\psi dx = 1$. With Equations \ref{eq:5} and \ref{eq:6}, we are ready to write a program to solve this problem. To ensure stability, $\Delta x$ has to be always greater than $\Delta t$.

Calculation results

[1] PW Atkins and RS Friedman. Molecular quantum mechanics. Oxford university press, 2011.

Go back; Go back to Main Page